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Abstract

We consider the pseudo-Euclidean space (Rn, g), with n ≥ 3 and gi j = δi j εi , εi = ±1 and tensors of the form

T =
∑

i fi (xk)εi dx2
i for a fixed k, 1 ≤ k ≤ n. We provide necessary and sufficient conditions for such a tensor to admit

metrics ḡ, conformal to g, that solve the Ricci equation or the Einstein equation. The solution to this problem is given explicitly
and it depends on an arbitrary differentiable function of one variable. Similar problems are considered for locally conformally flat
manifolds. Examples are provided of complete metrics on Rn , whose Ricci curvature is negative. Complete metrics are also given
on the cylinder or on the n-dimensional torus, that solve the Ricci equation or the Einstein equation. Examples of metrics with
positive Ricci curvatures are given on half-spaces of Rn .
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1. Introduction

In this paper, we consider a special class of symmetric tensors T on a pseudo-Euclidean space and we determine
all metrics, conformal to the pseudo-Euclidean metric, whose Ricci tensor is the given tensor T . A similar question is
considered for the Einstein equation. The theory is also extended to locally conformally flat manifolds.

Different aspects of the more general problem of finding a metric g whose Ricci tensor is a given second-order
symmetric tensor T were considered in several papers. DeTurck in [2] showed that this problem has a local solution
when T is a nonsingular tensor defined on a manifold Mn , n ≥ 3. Cao and DeTurck [1] considered rotationally
symmetric nonsingular tensors. For special classes of tensors T on the n-dimensional pseudo-Euclidean space and on
the hyperbolic space, with n ≥ 3, we obtained explicitly in [9,8] all metrics ḡ, conformal to the standard metric, such
that Ric ḡ = T . In [11,12], we considered the same problem for T = f g, on the pseudo-Euclidean space, the sphere
and the hyperbolic space, with the usual metric g, where f is a differentiable function. For the two-dimensional case,
existence and uniqueness results can be found in [3,5].
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With respect to the higher dimensional Einstein equation, we are looking for tensors T on an n-dimensional
manifold, that admit metrics g such that Ric g −

K
2 g = T , where K is the scalar curvature of g. When n = 4

and the metric is Lorentzian, then the equation is known as the Einstein field equation. DeTurck [4] considered the
Cauchy problem for this equation with nonsingular tensors. When the tensor T represents several physical situations,
this equation has been studied by several authors (see [6]). In [10], we considered this problem for special tensors and
metrics conformal to the standard metric of the n-dimensional pseudo-Euclidean space, n ≥ 3. In [11], we determined
all tensors of the form T = f g, where f is a differentiable function, g is the standard metric on the sphere that admits
a solution ḡ conformal to g, for the Einstein equation. The analogous problems for the pseudo-Euclidean and the
hyperbolic spaces were considered in [12].

In this paper, we extend these results to a more general class of tensors. More precisely, we consider (Rn, g), with
n ≥ 3, coordinates x = (x1, . . . , xn) and gi j = δi jεi , εi = ±1, where at least an εi is positive. We consider tensors of
the form

T =

∑
i

fi (xk)εi dx2
i (1)

for a fixed k, 1 ≤ k ≤ n, assuming that not all functions fi are constant and not all fi are equal.
We want to find ḡ =

1
ϕ2 g, which is a solution for the Ricci equation or the Einstein equation. More precisely, we

want to solve the following problems:ḡ =
1

ϕ2 g

Ric ḡ = T .

(2)


ḡ =

1

ϕ2 g

Ric ḡ −
K̄

2
ḡ = T .

(3)

We will show that the class of tensors of type (1), that solve problems (2) or (3) depend on an arbitrary differentiable
function of one variable. With respect to the assumptions on the functions fi of the tensor T , we observe that the cases
when all fi are constant or when they are all equal were considered in [9–12].

In Theorem 1.1 we provide necessary and sufficient conditions for solving (2) and the solutions are given explicitly.
In Theorem 1.2, we obtain analogous results for the Einstein equation (3). We also extend the results to locally
conformally flat manifolds. By applying the theory, we exhibit examples of complete metrics on Rn , whose Ricci
curvature is negative. The existence of such metrics in any Riemannian manifold was proved in [7] by Lohkamp.
Examples of complete metrics are also given on the cylinder or on the n-dimensional torus, that solve the Ricci
equation or the Einstein equation. On half-spaces of Rn , we provide metrics with positive Ricci curvatures.

As a consequence of Theorem 1.1, we show that for certain functions K̄ , depending on one variable, there exist
metrics ḡ, conformal to the pseudo-Euclidean metric g, whose scalar curvature is K̄ . Equivalently, we find C∞

solutions for the equation

4(n − 1)

n − 2
∆gu + K̄ u

n+2
n−2 = 0. (4)

where ∆g denotes the Laplacian in the pseudo-Euclidean metric g. We observe that in the Riemannian case there
exist functions K̄ whose corresponding metrics are complete on Rn . The metrics on Rn conformal to the Euclidean
metric obtained from solutions of (4) provide solutions for the following problem: Given a differentiable function K̄ ,
on Riemannian manifold (M, g), is there a metric ḡ conformal to g whose scalar curvature is K̄ ? This problem has
been studied by many authors. In particular, when K̄ is constant, it is known as the Yamabe problem.

2. Main results

We will now state our main results. The proofs will be given in the following section.
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Theorem 1.1. Let (Rn, g), n ≥ 3, be a pseudo-Euclidean space, with coordinates x = (x1, . . . , xn), gi j = δi jεi ,
εi = ±1. Consider the tensor T =

∑n
i=1 fi (xk)εi dx2

i , for some fixed k. Assume that not all fi are constant and that
not all fi are equal. Then there exists ḡ =

1
ϕ2 g such that Ric ḡ = T if, and only if, there exists a differentiable function

U (xk) such that

fk(xk) = εk(n − 1)U ′′(xk) (5)

f j (xk) = εk[U
′′(xk) − (n − 2)(U ′(xk))

2
] ∀ j 6= k. (6)

ϕ = eU (xk ). (7)

We observe that the case of Theorem 1.1, when all functions fi are constant, was considered in Theorems 1.3 and 1.4
of [9] and the case when all functions fi are equal was investigated in [12].

Theorem 1.2. Let (Rn, g), n ≥ 3, be a pseudo-Euclidean space with coordinates x = (x1, . . . , xn), gi j = δi jεi ,
εi = ±1. Consider T =

∑n
i=1 fi (xk)εkdx2

i for some fixed k. Assume that not all fi are constant and that not all fi

are equal. Then there exists ḡ =
1
ϕ2 g such that Ric ḡ −

K̄
2 ḡ = T if, and only if, there exists a differentiable function

U (xk) such that

fk(xk) = εk
(n − 1)(n − 2)

2
(U ′(xk))

2 (8)

f j (xk) = εk(n − 2)

(
(n − 3)

2
(U ′(xk))

2
− U ′′(xk)

)
∀ j 6= k. (9)

ϕ = eU (xk ). (10)

We observe that the case of Theorem 1.2, when all functions fi are constant, was considered in Theorems 3 and 4 of
[10] and the case when all functions fi are equal was studied in [12].

Corollary 1.3. If (Rn, g) is the Euclidean space and ϕ(xk) ≤ C for some constant C > 0, then the metrics given by
Theorems 1.1 and 1.2 are complete on Rn .

Example 1.4. As a direct consequence of Theorem 1.1, Theorem 1.2 and Corollary 1.3 we get the following examples,
where we are considering (Rn, g), n ≥ 3, the pseudo-Euclidean space with coordinates (x1, . . . , xn) such that
gi j = δi jεi , εi = ±1.

(a) Consider the function U = −xm
k , for some fixed k, where m is an even number and the tensor

T = −mxm−2
k

{
(m − 1)(n − 1)dx2

k + εk
[
m − 1 + (n − 2)mxm

k

]∑
j 6=k

ε j dx2
j

}
,

determined as in Theorem 1.1. We observe that although this tensor is singular on the hyperplane xk = 0, there
exists ḡ =

1
ϕ2 g such that Ric ḡ = T , globally defined on Rn with ϕ = exp(−xm

k ). Moreover, it follows from
Corollary 1.3, that in the Euclidean case, the metric ḡ is a complete metric on Rn , whose Ricci curvature is
negative.

(b) Consider the periodic function U = sin xk for some fixed k. Then the tensor

T =

n∑
j=1

{εkε j (1 − δ jk)[−sinxk − (n − 2) cos2 xk] − δ jk(n − 1) sin xk}dx2
j

admits the metric ḡ = g/e2 sin xk whose Ricci tensor is T . The scalar curvature is given by

K̄ = −εk(n − 1)e2 sin xk [2 sin xk + (n − 2) cos2 xk]

and it has positive and negative values. Observe that ḡ is periodic in all variables and when ε j = 1, it can be
considered to be a complete metric on a cylinder or an n-dimensional torus.
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(c) We observe that, as a consequence of Theorem 1.2, the periodic function U = sin xk , for some fixed k, determines
a tensor

T =

n∑
j=1

εkε j
n − 2

2
{(1 − δ jk)[2 sin xk + (n − 3) cos2 xk] + δ jk(n − 1) cos2 xk}dx2

j

which admits a solution ḡ = g/e2 sin xk for the Einstein equation. In the Euclidean case, this can be considered as
an example of a tensor defined on a torus, that admits a solution for the Einstein equation.

Corollary 1.5. Let (Rn, g) be a pseudo-Euclidean space, n ≥ 3, with coordinates x = (x1, . . . , xn), gi j = δi jεi ,
εi = ±1. Let K̄ : Rn

→ R be given by

K̄ = εk(n − 1)e2U (xk )[2U ′′
− (n − 2)(U ′)2

] (11)

for some xk , where U (xk) is a differentiable function. Then the differential equation

4(n − 1)

n − 2
∆gu + K̄ u

n+2
n−2 = 0 (12)

where ∆g denotes the Laplacian in the metric g, has a solution, globally defined on Rn , given by

u = e−
(n−2)

2 U (xk ). (13)

The geometric interpretation of the corollary above is the following:

Corollary 1.6. Let (Rn, g) be a pseudo-Euclidean space, n ≥ 3, and K̄ a function given by (11). Then there exists a

metric ḡ = u
4

n−2 g, where u is given by (13), whose scalar curvature is K̄ . In particular, if (Rn, g) is the Euclidean
space and u is a bounded function then ḡ is a complete metric.

Example 1.7. As a direct consequence of Corollary 1.5 we have the following example, locally conformal to the
Euclidean space (Rn, g). Consider the function

U (x1) = −
1

n − 1
log

(
−

n − 1
2

x1 + b

)2

defined on the half-space of Rn where (n − 1)x1 − 2b < 0 and the scalar curvature given by (11). Then the metric
ḡ = g/e2U has positive scalar and Ricci curvatures.

We now consider a Riemannian manifold locally conformally flat (Mn, g); then one can consider problems (2) and
(3) for any neighborhood V ⊂ M such that there are local coordinates (x1, . . . , xn) with gi j = δi j/F2, where F is a
nonvanishing differentiable function on V . It is easy to see that the following results hold.

Theorem 1.8. Let (Mn, g), n ≥ 3, be a Riemannian manifold, locally conformally flat. Let V be an open subset of
M with coordinates (x1, . . . , xn) such that gi j = δi j/F2. Consider the tensor T =

∑n
i=1 fi (xk)dx2

i for some fixed k.
Assume that not all fi are constant and not all of them are equal. Then there exists ḡ =

1
ϕ2 g such that Ric ḡ = T if,

and only if, there exists a differentiable function U (xk) on V such that

fk(xk) = (n − 1)U ′′(xk) (14)

f j (xk) = [U ′′(xk) − (n − 2)(U ′(xk))
2
] ∀ j 6= k. (15)

ϕ =
1
F

eU (xk ).

Theorem 1.9. Let (Mn, g), n ≥ 3, be a Riemannian manifold, locally conformally flat. Let V be an open subset of
M with coordinates (x1, . . . , xn) such that gi j = δi j/F2. Consider the tensor T =

∑n
i=1 fi (xk)dx2

i for some fixed k.
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Assume that not all fi are constant and not all are equal. Then there exists ḡ =
1
ϕ2 g such that Ric ḡ −

K̄
2 ḡ = T if,

and only if, there exists a differentiable function U (xk) such that

fk(xk) =
(n − 1)(n − 2)

2
(U ′(xk))

2 (16)

f j (xk) = (n − 2)

(
(n − 3)

2
(U ′(xk))

2
− U ′′(xk)

)
∀ j 6= k. (17)

ϕ =
1
F

eU (xk ).

As a consequence of Theorems 1.8 and 1.9, we have the following results for the hyperbolic space.

Corollary 1.10. Let (Rn
+, g∗), n ≥ 3, with g∗

i j = δi j/x2
n be the hyperbolic space. Let T =

∑n
i=1 fi (xk)dx2

i for some

fixed k. Assume that not all fi are constant and not all of them are equal. Then there exists ḡ =
1
ϕ2 g∗ such that

Ric ḡ = T if, and only if, there exists a differentiable function U (xk) on Rn
+ such that fk(xk) and f j (xk) are given by

(14), (15) and

ϕ =
1
xn

eU (xk ).

Corollary 1.11. Let (Rn
+, g∗), n ≥ 3, be the hyperbolic space with coordinates (x1, . . . , xn) such that g∗

i j = δi j/x2
n .

Consider the tensor T =
∑n

i=1 fi (xk)dx2
i for some fixed k. Assume that not all fi are constant and not all of them

are equal. Then there exists ḡ =
1
ϕ2 g∗ such that Ric ḡ −

K̄
2 ḡ = T if, and only if, there exists a differentiable function

U (xk) on Rn
+ such that fk(xk) and f j (xk) are given by (16), (17) and

ϕ =
1
xn

eU (xk ).

Corollary 1.12. Let (Rn
+, g∗), n ≥ 3, be the hyperbolic space and ϕ(xk) ≤ C for some constant C > 0; then the

metrics given by Corollaries 1.10 and 1.11 are complete on Rn
+.

Example 1.13. As a direct consequence of the previous result, we have the following example. Let (Rn
+, g∗), n ≥ 3,

be the hyperbolic space and ϕ(x) = e−xm
n , where m is an even number. Then ḡ = g∗/ϕ2 is a complete metric on Rn

+

and its Ricci curvature is negative.

We observe that there are similar results for manifolds that are locally conformal to the pseudo-Euclidean space.

4. Proof of the main results

Proof of Theorem 1.1. Since Ric g = 0, we have that ḡ =
1
ϕ2 g is such that Ric ḡ = T if, and only if,

T = Ric ḡ =
1

ϕ2 {(n − 2)ϕHessg(ϕ) + [ϕ∆gϕ − (n − 1)|∇gϕ|
2
]g}. (18)

This is equivalent to the following system of equations:

ϕ,xi x j = 0, ∀i 6= j, (19)

where ϕ,xi x j denotes the second-order derivative of ϕ with respect to xi x j and

εi fi (xk) = (n − 2)
ϕ,xi xi

ϕ
+ εi

∆gϕ

ϕ
− εi (n − 1)

|∇gϕ|
2

ϕ2 ∀i. (20)
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From (19), we get ϕ =
∑n

i=1 ϕi (xi ), which substituted into (20) gives

fi (xk) = εi (n − 2)
ϕ′′

i

ϕ
+

∆gϕ

ϕ
− (n − 1)

|∇gϕ|
2

ϕ2 , ∀i. (21)

We will show that ϕ depends only on xk and that all functions fi for i 6= k are equal.
As a consequence of (21), we get[

fi (xk) − f j (xk)
]
ϕ = (n − 2)[εiϕ

′′

i (xi ) − ε jϕ
′′

j (x j )] ∀i 6= j. (22)

By hypothesis, there exists i0 6= k such that fi0 6= fk . Then taking the derivative of fi0 − fk , given by (22), with
respect to x j , for j 6= i0 and j 6= k, we get that ϕ,x j = 0. Hence ϕ = ϕi0(xi0) + ϕk(xk).

If for all j, j 6= i0 and j 6= k, we have fk(xk) − f j (xk) = 0, then from (22) we get that ϕ′′

k (xk) = 0. In this case,
it follows from (21) that

fk(xk) = f j (xk) =
∆gϕ

ϕ
− (n − 1)

|∇gϕ|
2

ϕ2 .

Moreover, from fi0 − fk given by (22), we get ϕ′′

i0
(xi0) 6= 0 and

ϕi0(xi0) + ϕk(xk)

ϕ′′

i0
(xi0)

=
(n − 2)εi0

fi0(xk) − fk(xk)
. (23)

Taking the derivative of this equation with respect to xk , since not all fi are constant, we obtain that ϕ′′

i0
(xi0) = a 6= 0,

where a is a real constant. Moreover, taking the derivative of (23) with respect to xi0 , we conclude that a = 0, which
is a contradiction.

Therefore, there exists j0, j0 6= i0 and j0 6= k, such that fk(xk) − f j0(xk) 6= 0. Then taking the derivative of (22)
with respect to xi0 , we get ϕ′

i0
(xi0) = 0. Hence ϕ depends only on xk and it follows from (22) that

fi (xk) − f j (xk) = 0 ∀i, j i 6= k j 6= k.

Moreover, from (21) we have

fk = εk(n − 1)

(
ϕ′′

ϕ
−

(ϕ′)2

ϕ2

)
, (24)

f j = εk

(
ϕ′′

ϕ
− (n − 1)

(ϕ′)2

ϕ2

)
, j 6= k. (25)

Now we consider

ϕ′

ϕ
= U ′(xk) (26)

where U (xk) is a differentiable function. It follows from (24)–(26) that ϕ is given by (7) and that fk and f j are given
by (5) and (6) respectively. The converse is a straightforward computation. �

Proof of Theorem 1.2. Since Ric g = 0 and

K̄ = (n − 1)(2ϕ∆gϕ − n|∇gϕ|
2),

we have that ḡ =
1
ϕ2 g is such that Ric ḡ − K̄ ḡ/2 = T if, and only if,

T =
1

ϕ2

{
(n − 2)ϕHessg(ϕ) +

[
−(n − 2)ϕ∆gϕ +

(n − 1)(n − 2)

2
|∇gϕ|

2
]

g

}
. (27)

This is equivalent to the following system of equations:

ϕ,xi x j = 0, ∀i 6= j (28)
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and

εi fi (xk) = (n − 2)

(
ϕ,xi xi

ϕ
− εi

∆gϕ

ϕ
+ εi (n − 1)

|∇gϕ|
2

2ϕ2

)
∀i. (29)

From (28), we get ϕ =
∑n

i=1 ϕi (xi ), which substituted into (29) gives

fi (xk) = (n − 2)

(
εi

ϕ′′

i

ϕ
−

∆gϕ

ϕ
+ (n − 1)

|∇gϕ|
2

2ϕ2

)
, ∀i. (30)

As a consequence of this last equation, we get[
fi (xk) − f j (xk)

]
ϕ = (n − 2)[εiϕ

′′

i (xi ) − ε jϕ
′′

j (x j )] ∀i 6= j. (31)

By hypothesis, there exists i0 6= k such that fi0 6= fk . Then taking the derivative of (31) with respect to x j , for
j 6= i0 and j 6= k, we get that ϕ,x j = 0. Hence ϕ = ϕi0(xi0) + ϕk(xk).

If for all j, j 6= i0 and j 6= xk , we have fk(xk) − f j (xk) = 0, then from (31) we get that ϕ′′

k (xk) = 0. In this case,
we have

fk(xk) = f j (xk) = (n − 2)

(
−

∆gϕ

ϕ
+ (n − 1)

|∇gϕ|
2

2ϕ2

)
.

Moreover, from (31), we get ϕ′′

i0
(xi0) 6= 0 and

ϕi0(xi0) + ϕk(xk)

ϕ′′

i0
(xi0)

=
(n − 2)εi0

fi0(xk) − fk(xk)
. (32)

Taking the derivative of this equation with respect to xk , since not all fi are constant, we obtain that ϕ′′

i0
(xi0) = a 6= 0,

where a is a real constant. Taking the derivative of (32) with respect to xi0 , we conclude that a = 0, which is a
contradiction.

Therefore, there exists j0, j0 6= i0 and j0 6= k, such that fk(xk) − f j0(xk) 6= 0. Then taking the derivative of (31)
with respect to xi0 , we get ϕi0(xi0) = 0. Hence ϕ depends only on xk and it follows from (31) that

fi (xk) − f j (xk) = 0 ∀i, j such that i 6= k j 6= k.

Moreover, from (29) we have

fk = εk(n − 1)(n − 2)
(ϕ′)2

2ϕ2 , (33)

f j = εk(n − 2)

[
−

ϕ′′

ϕ
+ (n − 1)

(ϕ′)2

2ϕ2

]
, j 6= k. (34)

Now we consider

ϕ′

ϕ
= U ′(xk)

where U (xk) is a differentiable function. It follows that ϕ is given by (10) and from (33) and (34) we conclude that
(8) and (9) hold. The converse is a straightforward computation. �

Proof of Corollary 1.3. Consider the Euclidean space (Rn, g), n ≥ 3, and a metric ḡ given by Theorem 1.1 or
Theorem 1.2. If ϕ(xk) ≤ C , where C > 0, then the metric ḡ is complete, since there exists a constant m > 0, such
that for any vector v ∈ Rn , |v|ḡ ≥ m|v|. �

Proof of Corollary 1.5. It follows from (5) and (6) that for the metric ḡ of Theorem 1.1, the scalar curvature is

K̄ = εk(n − 1)e2U
[2U ′′

− (n − 2)(U ′)2
]. (35)

Define the function u
−2

n−2 = eU
= ϕ. Substituting for U and its derivatives in terms of u, we obtain (12). �



888 R. Pina, K. Tenenblat / Journal of Geometry and Physics 57 (2007) 881–888

Proof of Corollary 1.6. This result follows immediately from the previous corollary, since finding a metric ḡ =

u
4

n−2 g with scalar curvature K̄ is equivalent to solving Eq. (12). �

For the proofs of Theorems 1.8 and 1.9, we consider the function ϕ̃ = ϕF . Then arguments similar to those of
Theorems 1.1 and 1.2 complete the proofs.

Acknowledgements

Romildo Pina was partially supported by CAPES/PROCAD, CNPq/PADCT. Keti Tenenblat was partially supported
by CNPq, CAPES/PROCAD, CNPq/PADCT.

References

[1] J. Cao, D. DeTurck, The Ricci curvature equation with rotational symmetry, Amer. J. Math. 116 (1994) 219–241.
[2] D. DeTurck, Existence of metrics with prescribed Ricci curvature: Local theory, Invent. Math. 65 (1981) 179–207.
[3] D. DeTurck, Metrics with prescribed Ricci curvature, in: S.T. Yau (Ed.), Seminar on Differential Geometry, in: Ann. of Math. Stud., vol. 102,

Princeton University Press, 1982, pp. 525–537.
[4] D. DeTurck, The Cauchy problem for Lorentz metrics with prescribed Ricci curvature, Compos. Math. 48 (1983) 327–349.
[5] R.S. Hamilton, The Ricci curvature equation, in: Seminar on Nonlinear Partial Differential Equations, Berkeley, California, 1983, pp. 47–72.
[6] D. Kramer, H. Stephani, M.A.H. MacCallum, E. Herlt, Exact solutions of Einstein field equations, Cambridge University Press, 1980.
[7] J. Lohkamp, Metrics of negative Ricci curvature, Ann. Math. 140 (1994) 655–683.
[8] R. Pina, Conformal metrics and Ricci tensors in the hyperbolic space, Mat. Contemp. 17 (1999) 254–262.
[9] R. Pina, K. Tenenblat, Conformal metrics and Ricci tensors in the pseudo-Euclidean space, Proc. Amer. Math. Soc. 129 (2001) 1149–1160.

[10] R. Pina, K. Tenenblat, On metrics satisfying equation Ri j − K gi j /2 = Ti j for constant tensors T, J. Geom. Phys. 40 (2002) 379–383.
[11] R. Pina, K. Tenenblat, Conformal metrics and Ricci tensors on the sphere, Proc. Amer. Math. Soc. 132 (2004) 3715–3724.
[12] R. Pina, K. Tenenblat, On the Ricci and Einstein equations on the pseudo-Euclidean and hyperbolic spaces, Differential Geom. Appl. 24

(2006) 101–107.


	A class of solutions of the Ricci and Einstein equations
	Introduction
	Main results
	Proof of the main results
	Acknowledgements
	References


